Jump to content

Andrew Huxley: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Changing short description from "English physiologist and biophysicist" to "English physiologist and biophysicist (1917–2012)"
 
(14 intermediate revisions by 13 users not shown)
Line 1: Line 1:
{{Short description|English physiologist and biophysicist}}
{{Short description|English physiologist and biophysicist (1917–2012)}}
{{Distinguish|text=the unrelated [[Andrew D. Huxley]]}}
{{Use British English|date=October 2012}}
{{Use British English|date=October 2012}}

{{Use dmy dates|date=February 2020}}
{{Use dmy dates|date=February 2020}}

{{Infobox scientist
{{Infobox scientist
| honorific_prefix = [[Sir]]
| honorific_prefix = [[Knight Bachelor|Sir]]
| honorific_suffix = {{post-nominals|country=GBR|OM|FRS|size=100%}}
| honorific_suffix = {{post-nominals|country=GBR|OM|FRS|HonFREng|size=100%}}
| image = Andrew Fielding Huxley nobel.jpg
| image = Andrew Fielding Huxley nobel.jpg
| image_size =
| image_size =
| caption = Huxley in 1963
| caption = Huxley in 1963
| birth_name = Andrew Fielding Huxley
| birth_name = Andrew Fielding Huxley
| birth_date = {{birth date|1917|11|22|df=yes}}
| birth_date = {{birth date|1917|11|22|df=yes}}
| birth_place = [[Hampstead]], London, England
| birth_place = [[Hampstead]], London, England
| death_date = {{death date and age|2012|5|30|1917|11|22|df=yes}}
| death_date = {{death date and age|2012|5|30|1917|11|22|df=yes}}
| death_place = [[Cambridge]], England
| death_place = [[Cambridge]], England
| fields = {{Flatlist|
| fields = {{Flatlist|
* [[Physiology]]
* [[Physiology]]
* [[biophysics]]}}
* [[biophysics]]}}
| workplaces = {{Plainlist|
| workplaces = {{Plainlist|
* [[University of Cambridge]]
* [[University of Cambridge]]
* [[University College London]]}}
* [[University College London]]}}
| alma_mater = [[University of Cambridge]] <!--trinity college doesn't award degrees-->
| alma_mater = [[University of Cambridge]] <!--trinity college doesn't award degrees-->
| doctoral_advisor =
| doctoral_advisor =
| academic_advisors =
| academic_advisors =
| doctoral_students =
| doctoral_students =
| notable_students =
| notable_students =
| known_for = {{Flatlist|
| known_for = {{Flatlist|
* Nerve [[action potential]]s
* [[Action potential]]s in [[nerve]]s
* [[muscle contraction]]}}
* [[muscle contraction]]}}
| author_abbrev_bot =
| author_abbrev_bot =
| author_abbrev_zoo =
| author_abbrev_zoo =
| influences =
| influences =
| influenced =
| influenced =
| awards = {{Plainlist|
| awards = {{Plainlist|
* [[Fellow of the Royal Society|FRS]] (1955)
* [[Fellow of the Royal Society|FRS]] (1955)
* [[Nobel Prize in Physiology or Medicine]] (1963)
* [[Nobel Prize in Physiology or Medicine]] (1963)
Line 39: Line 40:
* [[Physiological Society Annual Review Prize Lecture]] (1973)
* [[Physiological Society Annual Review Prize Lecture]] (1973)
* [[Baly Medal]] (1975)
* [[Baly Medal]] (1975)
* [[Order of Merit]] (1983)}}
* [[Order of Merit]] (1983)
* [[FREng|HonFREng]] (1986)}}
| signature = <!--(filename only)-->
| footnotes =
| signature = <!--(filename only)-->
| spouse = {{marriage|J. Richenda G. Pease|1947|2003|end=died}}
| footnotes =
| spouse = {{marriage|J. Richenda G. Pease|1947|2003|end=died}}
| children = 6
| children = 6
| father = [[Leonard Huxley (writer)|Leonard Huxley]]
| father = [[Leonard Huxley (writer)|Leonard Huxley]]
| relatives = [[Huxley family]]
| relatives = [[Huxley family]]
}}
}}


'''Sir Andrew Fielding Huxley''' {{post-nominals|country=GBR|OM|FRS}} (22 November 1917{{spaced ndash}}30 May 2012) was an English [[physiology|physiologist]] and [[biophysics|biophysicist]].<ref name=huxley1996>{{cite book|title=The History of Neuroscience in Autobiography|year=1996|publisher=Society for Neuroscience|location=Washington DC|isbn=978-0-12-660246-3|pages=283–318|chapter-url=http://www.sfn.org/~/media/SfN/Documents/TheHistoryofNeuroscience/Volume%204/c8.ashx|author=Huxley, Andrew F.|editor=Squire, Larry R.|chapter=Andrew F. Huxley}}</ref><ref>{{cite journal|last=Goldman|first=Yale E.|author2=Franzini-Armstrong, Clara |author3=Armstrong, Clay M. |title=Andrew Fielding Huxley (1917–2012)|journal=Nature|year=2012|volume=486|issue=7404|pages=474|doi=10.1038/486474a|bibcode = 2012Natur.486..474G|pmid=22739307|doi-access=free}}</ref> He was born into the prominent [[Huxley family]]. After leaving [[Westminster School]] in central London, he went to [[Trinity College, Cambridge]] on a scholarship, after which he joined [[Alan Lloyd Hodgkin]] to study nerve impulses. Their eventual discovery of the basis for propagation of nerve impulses (called an [[action potential]]) earned them the [[Nobel Prize in Physiology or Medicine]] in 1963. They made their discovery from the [[Squid giant axon|giant axon]] of the [[Loligo pealei|Atlantic squid]]. Soon after the outbreak of the [[Second World War]], Huxley was recruited by the British Anti-Aircraft Command and later transferred to the Admiralty. After the war he resumed research at the [[University of Cambridge]], where he developed [[interference microscopy]] that would be suitable for studying muscle fibres.
'''Sir Andrew Fielding Huxley''' {{post-nominals|country=GBR|OM|FRS|HonFREng}} (22 November 1917{{spaced ndash}}30 May 2012) was an English [[physiology|physiologist]] and [[biophysics|biophysicist]].<ref name="huxley1996">{{cite book |author=Huxley |first=Andrew F. |url=https://www.sfn.org/about/history-of-neuroscience/autobiographical-chapters |title=The History of Neuroscience in Autobiography |publisher=[[Academic Press]] and [[Society for Neuroscience]] |year=2004 |isbn=0-12-660246-8 |editor=Squire |editor-first=Larry R. |editor-link=Larry Squire |volume=4 |location= |pages=282–318 |chapter=Andrew F. Huxley |chapter-url=https://www.sfn.org/~/media/SfN/Documents/TheHistoryofNeuroscience/Volume%204/c8.ashx}}</ref><ref>{{cite journal|last=Goldman|first=Yale E.|author2=Franzini-Armstrong, Clara |author3=Armstrong, Clay M. |title=Andrew Fielding Huxley (1917–2012)|journal=Nature|year=2012|volume=486|issue=7404|pages=474|doi=10.1038/486474a|bibcode = 2012Natur.486..474G|pmid=22739307|doi-access=free}}</ref> He was born into the prominent [[Huxley family]]. After leaving [[Westminster School]] in central London, he went to [[Trinity College, Cambridge]], on a scholarship, after which he joined [[Alan Hodgkin]] to study nerve impulses. Their eventual discovery of the basis for propagation of nerve impulses (called an [[action potential]]) earned them the [[Nobel Prize in Physiology or Medicine]] in 1963. They made their discovery from the [[Squid giant axon|giant axon]] of the [[Longfin inshore squid|Atlantic squid]]. Soon after the outbreak of the [[World War II|Second World War]], Huxley was recruited by the British Anti-Aircraft Command and later transferred to the Admiralty. After the war he resumed research at the [[University of Cambridge]], where he developed [[interference microscopy]] that would be suitable for studying muscle fibres.


In 1952, he was joined by a German physiologist [[Rolf Niedergerke]]. Together they discovered in 1954 the mechanism of muscle contraction, popularly called the "[[sliding filament theory]]", which is the foundation of our modern understanding of muscle mechanics. In 1960 he became head of the Department of Physiology at [[University College London]]. He was elected a Fellow of the [[Royal Society]] in 1955, and [[President of the Royal Society|President]] in 1980. The Royal Society awarded him the [[Copley Medal]] in 1973 for his collective contributions to the understanding of nerve impulses and muscle contraction. He was conferred a [[Knight Bachelor]] by [[Elizabeth II|the Queen]] in 1974, and was appointed to the [[Order of Merit]] in 1983. He was a fellow of Trinity College, Cambridge, until his death.
In 1952, he was joined by a German physiologist [[Rolf Niedergerke]]. Together they discovered in 1954 the mechanism of muscle contraction, popularly called the "[[sliding filament theory]]", which is the foundation of our modern understanding of muscle mechanics. In 1960 he became head of the Department of Physiology at [[University College London]]. He was elected a Fellow of the [[Royal Society]] in 1955, and [[President of the Royal Society|President]] in 1980. The Royal Society awarded him the [[Copley Medal]] in 1973 for his collective contributions to the understanding of nerve impulses and muscle contraction. He was conferred a [[Knight Bachelor]] by [[Elizabeth II|the Queen]] in 1974, and was appointed to the [[Order of Merit]] in 1983. He was a fellow of Trinity College, Cambridge, until his death.
Line 56: Line 58:
Huxley was born in [[Hampstead, London]], England, on 22 November 1917. He was the youngest son of the writer and editor [[Leonard Huxley (writer)|Leonard Huxley]] by Leonard Huxley's second wife Rosalind Bruce, and hence half-brother of the writer [[Aldous Huxley]] and fellow biologist [[Julian Huxley]], and grandson of the biologist [[Thomas Henry Huxley|T. H. Huxley]].
Huxley was born in [[Hampstead, London]], England, on 22 November 1917. He was the youngest son of the writer and editor [[Leonard Huxley (writer)|Leonard Huxley]] by Leonard Huxley's second wife Rosalind Bruce, and hence half-brother of the writer [[Aldous Huxley]] and fellow biologist [[Julian Huxley]], and grandson of the biologist [[Thomas Henry Huxley|T. H. Huxley]].


When he was about 12, Andrew and his brother David were given a [[lathe]] by their parents. Andrew soon became proficient at designing, making and assembling mechanical objects of all kinds, from wooden candle sticks to a working [[internal combustion engine]]. He used these practical skills throughout his career, building much of the specialized equipment he needed for his research. It was also in his early teens that he formed his lifelong interest in [[microscopy]].<ref>{{cite news|title=Sir Andrew Huxley|url=https://www.theguardian.com/science/2012/may/31/sir-andrew-huxley|publisher=The Guardian 31 May 2012|access-date=24 February 2013|location=London|first=Anthony|last=Tucker|date=31 May 2012}}</ref>
When he was about 12, Andrew and his brother David were given a [[lathe]] by their parents. Andrew soon became proficient at designing, making and assembling mechanical objects of all kinds, from wooden candle sticks to a working [[internal combustion engine]]. He used these practical skills throughout his career, building much of the specialized equipment he needed for his research. It was also in his early teens that he formed his lifelong interest in [[microscopy]].<ref name=":0">{{Cite news |last=Tucker |first=Anthony |date=2012-05-31 |title=Sir Andrew Huxley obituary |language=en-GB |work=[[The Guardian]] |url=https://www.theguardian.com/science/2012/may/31/sir-andrew-huxley |access-date=2023-12-16 |issn=0261-3077}}</ref>


He was educated at [[University College School]] and [[Westminster School]] in Central London, where he was a [[King's Scholar]]. He graduated and won a scholarship to [[Trinity College, Cambridge]], to read [[Natural Sciences (Cambridge)|natural sciences]]. He had intended to become an engineer but switched to physiology after taking the subject to fulfill an elective.<ref>{{cite web |title=The Nobel Prize in Physiology or Medicine 1963 |url=https://www.nobelprize.org/prizes/medicine/1963/huxley/biographical/ |website=NobelPrize.org |access-date=22 May 2021}}</ref>
He was educated at [[University College School]] and [[Westminster School]] in Central London, where he was a [[King's Scholar]]. He graduated and won a scholarship to [[Trinity College, Cambridge]], to read [[Natural Sciences (Cambridge)|natural sciences]]. He had intended to become an engineer but switched to physiology after taking the subject to fulfill an elective.<ref name=":1">{{Cite web |title=Andrew F. Huxley Biographical |url=https://www.nobelprize.org/prizes/medicine/1963/huxley/biographical/ |access-date=2023-12-16 |website=[[NobelPrize.org]] |language=en-US}}</ref>


==Career==
==Career==
Having entered Cambridge in 1935, Huxley graduated with a bachelor's degree in 1938. In 1939, [[Alan Lloyd Hodgkin]] returned from the US to take up a fellowship at Trinity College, and Huxley became one of his postgraduate students. Hodgkin was interested in the transmission of electrical signals along nerve fibres. Beginning in 1935 in Cambridge, he had made preliminary measurements on frog [[sciatic nerve]]s suggesting that the accepted view of the nerve as a simple, elongated battery was flawed. Hodgkin invited Huxley to join him researching the problem. The work was experimentally challenging. One major problem was that the small size of most [[neurons]] made it extremely difficult to study them using the techniques of the time. They overcame this by working at the [[Marine Biological Association]] laboratory in [[Plymouth]] using the [[squid giant axon|giant axon]] of the longfin inshore squid (''[[Doryteuthis pealeii|Doryteuthis (formerly Loligo) pealeii]]''), which have the largest neurons known.<ref>{{cite book |url=https://books.google.com/books?id=SDi2BQAAQBAJ |title=The Brain, the Nervous System, and Their Diseases |first=Jennifer L. |last=Hellier |year=2014 |page=532 |publisher=ABC-Clio |isbn=9781610693387}}</ref> The experiments were still extremely challenging as the nerve impulses only last a fraction of a millisecond, during which time they needed to measure the changing electrical potential at different points along the nerve. Using equipment largely of their own construction and design, including one of the earliest applications of a technique of [[electrophysiology]] known as the [[voltage clamp]], they were able to record ionic currents. In 1939, they jointly published a short paper in ''[[Nature (journal)|Nature]]'' reporting on the work done in Plymouth and announcing their achievement of recording action potentials from inside a nerve fibre.<ref>{{cite journal|last=Hodgkin|first=A. L.|author2=Huxley, A. F.|title=Action potentials recorded from Inside a nerve fibre|journal=Nature|year=1939|volume=144|issue=3651|pages=710–711|doi=10.1038/144710a0|bibcode = 1939Natur.144..710H |s2cid=4104520}}</ref>
Having entered Cambridge in 1935, Huxley graduated with a bachelor's degree in 1938. In 1939, [[Alan Lloyd Hodgkin]] returned from the US to take up a fellowship at Trinity College, and Huxley became one of his postgraduate students. Hodgkin was interested in the transmission of electrical signals along nerve fibres. Beginning in 1935 in Cambridge, he had made preliminary measurements on frog [[sciatic nerve]]s suggesting that the accepted view of the nerve as a simple, elongated battery was flawed. Hodgkin invited Huxley to join him researching the problem. The work was experimentally challenging. One major problem was that the small size of most [[neurons]] made it extremely difficult to study them using the techniques of the time. They overcame this by working at the [[Marine Biological Association]] laboratory in [[Plymouth]] using the [[squid giant axon|giant axon]] of the longfin inshore squid (''[[Doryteuthis pealeii|Doryteuthis (formerly Loligo) pealeii]]''), which have the largest neurons known.<ref>{{cite book |last=Hellier |first=Jennifer L. |title=The Brain, the Nervous System, and Their Diseases |publisher=[[Greenwood Publishing Group|Greenwood]] |year=2015 |isbn=978-1-61069-338-7 |page=532}}</ref> The experiments were still extremely challenging as the nerve impulses only last a fraction of a millisecond, during which time they needed to measure the changing electrical potential at different points along the nerve. Using equipment largely of their own construction and design, including one of the earliest applications of a technique of [[electrophysiology]] known as the [[voltage clamp]], they were able to record ionic currents. In 1939, they jointly published a short paper in ''[[Nature (journal)|Nature]]'' reporting on the work done in Plymouth and announcing their achievement of recording action potentials from inside a nerve fibre.<ref>{{cite journal|last=Hodgkin|first=A. L.|author2=Huxley, A. F.|title=Action potentials recorded from Inside a nerve fibre|journal=Nature|year=1939|volume=144|issue=3651|pages=710–711|doi=10.1038/144710a0|bibcode = 1939Natur.144..710H |s2cid=4104520}}</ref>


Then [[World War II]] broke out, and their research was abandoned. Huxley was recruited by the British Anti-Aircraft Command, where he worked on radar control of anti-aircraft guns. Later he was transferred to the Admiralty to do work on naval gunnery, and worked in a team led by [[Patrick Blackett]]. Hodgkin, meanwhile, was working on the development of radar at the Air Ministry. When he had a problem concerning a new type of gun sight, he contacted Huxley for advice. Huxley did a few sketches, borrowed a lathe and produced the necessary parts.
Then [[World War II]] broke out, and their research was abandoned. Huxley was recruited by the British Anti-Aircraft Command, where he worked on radar control of anti-aircraft guns. Later he was transferred to the Admiralty to do work on naval gunnery, and worked in a team led by [[Patrick Blackett]]. Hodgkin, meanwhile, was working on the development of radar at the Air Ministry. When he had a problem concerning a new type of gun sight, he contacted Huxley for advice. Huxley did a few sketches, borrowed a lathe and produced the necessary parts.


Huxley was elected to a research fellowship at Trinity College, Cambridge, in 1941. In 1946, with the war ended, he was able to take this up and to resume his collaboration with Hodgkin on understanding how nerves transmit signals. Continuing their work in Plymouth, they were, within six years, able to solve the problem using equipment they built themselves. The solution was that nerve impulses, or action potentials, do not travel down the core of the fiber, but rather along the outer membrane of the fiber as cascading waves of sodium ions diffusing inward on a rising pulse and potassium ions diffusing out on a falling edge of a pulse. In 1952, they published their theory of how [[action potentials]] are transmitted in a joint paper, in which they also describe one of the earliest computational models<ref>[http://www.ebi.ac.uk/biomodels/ModelMonth/September2006/BIOMD0000000020_MM.html one of the earliest computational models]</ref> in biochemistry. This model forms the basis of most of the models used in neurobiology during the following four decades.<ref>{{cite book|last1=Reilly|first1=J.P.|last2=Diamant|first2=A.M.|title=Electrostimulation|date=2011|publisher=Artech House|isbn=978-1-60807-108-1|pages=20–21}}</ref>
Huxley was elected to a research fellowship at Trinity College, Cambridge, in 1941. In 1946, with the war ended, he was able to take this up and to resume his collaboration with Hodgkin on understanding how nerves transmit signals. Continuing their work in Plymouth, they were, within six years, able to solve the problem using equipment they built themselves. The solution was that nerve impulses, or action potentials, do not travel down the core of the fiber, but rather along the outer membrane of the fiber as cascading waves of sodium ions diffusing inward on a rising pulse and potassium ions diffusing out on a falling edge of a pulse. In 1952, they published their theory of how [[action potentials]] are transmitted in a joint paper, in which they also describe one of the earliest computational models in biochemistry.<ref>{{Cite web |last=Le Novère |first=Nicolas |author-link=Nicolas Le Novère |title=hodgkin-huxley squid-axon 1952 |url=https://www.ebi.ac.uk/biomodels/BIOMD0000000020#Overview |access-date=15 December 2023 |website=[[BioModels]]}}</ref> This model forms the basis of most of the models used in neurobiology during the following four decades.<ref>{{cite book |last1=Reilly |first1=J. Patrick |url=https://us.artechhouse.com/Electrostimulation-Theory-Applications-and-Computational-Model-P1468.aspx |title=Electrostimulation: Theory, Applications, and Computational Model |last2=Diamant |first2=Alan M. |date=2011 |publisher=[[Artech House]] |isbn=978-1-60807-108-1 |pages=20–21}}</ref>


In 1952, having completed work on action potentials, Huxley was teaching physiology at Cambridge and became interested in another difficult, unsolved problem: how does muscle contract? To make progress on understanding the function of muscle, new ways of observing how the network of filaments behave during contraction were needed. Prior to the war, he had been working on a preliminary design for [[interference microscopy]], which at the time he believed to be original, though it turned out to have been tried 50 years before and abandoned. He, however, was able to make interference microscopy work and to apply it to the problem of muscle contraction with great effect. He was able to view muscle contraction with greater precision than conventional microscopes, and to distinguish types of fiber more easily. By 1953, with the assistance of [[Rolf Niedergerke]], he began to find the features of muscle movement. Around that time, [[Hugh Huxley]] and [[Jean Hanson]] came to a similar observation. Authored in pairs, their papers were simultaneously published in the 22 May 1954 issue of ''Nature''.<ref name=huxley54>{{cite journal|last=Huxley|first=A.F.|author2=Niedergerke, R.|title=Structural changes in muscle during contraction; interference microscopy of living muscle fibres|journal=Nature|year=1954|volume=173|issue=4412|pages=971–3|pmid=13165697|bibcode = 1954Natur.173..971H |doi = 10.1038/173971a0 |s2cid=4275495}}</ref><ref>{{cite journal|last=Huxley|first=H.|author2=Hanson, J.|title=Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation|journal=Nature|year=1954|volume=173|issue=4412|pages=973–76|pmid=13165698|bibcode = 1954Natur.173..973H |doi = 10.1038/173973a0 |s2cid=4180166}}</ref> Thus the four people introduced what is called the [[sliding filament theory]] of muscle contractions.<ref>{{cite journal|last=Huxley|first=A.F|title=A high-power interference microscope|journal=J. Physiol.|year=1954|volume=125|issue=1|pages=11–13|doi=10.1113/jphysiol.1954.sp005186|pmid=13192775|s2cid=222198517|doi-access=free}}</ref> Huxley synthesized his findings, and the work of colleagues, into a detailed description of muscle structure and how muscle contraction occurs and generates force that he published in 1957.<ref>{{cite journal|last=Huxley|first=A.F.|title=Muscle structure and theories of contraction |journal=Prog. Biophys. Biophys. Chem.|year=1957|volume=7|pages=255–318|doi=10.1016/S0096-4174(18)30128-8|pmid=13485191|doi-access=free}}</ref> In 1966 his team provided the proof of the theory, and has remained the basis of modern understanding of muscle physiology.<ref>{{cite journal|last=Gordon|first=AM|author2=Huxley, AF |author3=Julian, FJ |title=The variation in isometric tension with sarcomere length in vertebrate muscle fibres|journal=The Journal of Physiology|year=1966|volume=184|issue=1|pages=170–92|pmid=5921536|pmc=1357553|doi=10.1113/jphysiol.1966.sp007909}}</ref>
In 1952, having completed work on action potentials, Huxley was teaching physiology at Cambridge and became interested in another difficult, unsolved problem: how does muscle contract? To make progress on understanding the function of muscle, new ways of observing how the network of filaments behave during contraction were needed. Prior to the war, he had been working on a preliminary design for [[interference microscopy]], which at the time he believed to be original, though it turned out to have been tried 50 years before and abandoned. He, however, was able to make interference microscopy work and to apply it to the problem of muscle contraction with great effect. He was able to view muscle contraction with greater precision than conventional microscopes, and to distinguish types of fiber more easily. By 1953, with the assistance of [[Rolf Niedergerke]], he began to find the features of muscle movement. Around that time, [[Hugh Huxley]] and [[Jean Hanson]] came to a similar observation. Authored in pairs, their papers were simultaneously published in the 22 May 1954 issue of ''Nature''.<ref name=huxley54>{{cite journal|last=Huxley|first=A.F.|author2=Niedergerke, R.|title=Structural changes in muscle during contraction; interference microscopy of living muscle fibres|journal=Nature|year=1954|volume=173|issue=4412|pages=971–3|pmid=13165697|bibcode = 1954Natur.173..971H |doi = 10.1038/173971a0 |s2cid=4275495}}</ref><ref>{{cite journal|last=Huxley|first=H.|author2=Hanson, J.|title=Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation|journal=Nature|year=1954|volume=173|issue=4412|pages=973–76|pmid=13165698|bibcode = 1954Natur.173..973H |doi = 10.1038/173973a0 |s2cid=4180166}}</ref> Thus the four people introduced what is called the [[sliding filament theory]] of muscle contractions.<ref>{{cite journal|last=Huxley|first=A.F|title=A high-power interference microscope|journal=J. Physiol.|year=1954|volume=125|issue=1|pages=11–13|doi=10.1113/jphysiol.1954.sp005186|pmid=13192775|s2cid=222198517|doi-access=free}}</ref> Huxley synthesized his findings, and the work of colleagues, into a detailed description of muscle structure and how muscle contraction occurs and generates force that he published in 1957.<ref>{{cite journal|last=Huxley|first=A.F.|title=Muscle structure and theories of contraction |journal=Prog. Biophys. Biophys. Chem.|year=1957|volume=7|pages=255–318|doi=10.1016/S0096-4174(18)30128-8|pmid=13485191|doi-access=free}}</ref> In 1966 his team provided the proof of the theory, and has remained the basis of modern understanding of muscle physiology.<ref>{{cite journal|last=Gordon|first=AM|author2=Huxley, AF |author3=Julian, FJ |title=The variation in isometric tension with sarcomere length in vertebrate muscle fibres|journal=The Journal of Physiology|year=1966|volume=184|issue=1|pages=170–92|pmid=5921536|pmc=1357553|doi=10.1113/jphysiol.1966.sp007909}}</ref>
Line 73: Line 75:
He was an editor of the ''[[Journal of Physiology]]'' from 1950 to 1957 and also of the ''[[Journal of Molecular Biology]]''. In 1955, he was elected a [[Fellow of the Royal Society]] and served on the Council of the [[Royal Society]] from 1960 to 1962.<ref>{{cite journal | last1 = Malcolm Simmons | first1 = Robert | year = 2018 | title = Sir Andrew Fielding Huxley OM. 22 November 1917 – 30 May 2012 | journal = [[Biographical Memoirs of Fellows of the Royal Society]] | volume = 65| pages = 179–215| doi = 10.1098/rsbm.2018.0012 | doi-access = free }}</ref>
He was an editor of the ''[[Journal of Physiology]]'' from 1950 to 1957 and also of the ''[[Journal of Molecular Biology]]''. In 1955, he was elected a [[Fellow of the Royal Society]] and served on the Council of the [[Royal Society]] from 1960 to 1962.<ref>{{cite journal | last1 = Malcolm Simmons | first1 = Robert | year = 2018 | title = Sir Andrew Fielding Huxley OM. 22 November 1917 – 30 May 2012 | journal = [[Biographical Memoirs of Fellows of the Royal Society]] | volume = 65| pages = 179–215| doi = 10.1098/rsbm.2018.0012 | doi-access = free }}</ref>


Huxley held college and university posts in Cambridge until 1960, when he became head of the Department of Physiology at [[University College London]]. In addition to his administrative and teaching duties, he continued to work actively on muscle contraction, and also made theoretical contributions to other work in the department, such as that on [[animal reflectors]].<ref>{{cite journal|last=Huxley|first=A.F.|title=A theoretical treatment of reflexion of light by multilayer structures |journal=J. Exp. Biol.|year=1954|volume=48|issue=2|pages=227–245|doi=10.1242/jeb.48.2.227 }}</ref> In 1963, he was jointly awarded the [[Nobel Prize in Physiology or Medicine]] for his part in discoveries concerning the ionic mechanisms of the nerve cell.<ref>{{cite web|title=Nobel Prizes in Medicine 1963|url=https://www.nobelprize.org/nobel_prizes/medicine/laureates/1963/}}</ref> In 1969 he was appointed to a Royal Society Research Professorship, which he held in the Department of Physiology at University College London.
Huxley held college and university posts in Cambridge until 1960, when he became head of the Department of Physiology at [[University College London]]. In addition to his administrative and teaching duties, he continued to work actively on muscle contraction, and also made theoretical contributions to other work in the department, such as that on [[animal reflectors]].<ref>{{cite journal|last=Huxley|first=A.F.|title=A theoretical treatment of reflexion of light by multilayer structures |journal=J. Exp. Biol.|year=1954|volume=48|issue=2|pages=227–245|doi=10.1242/jeb.48.2.227 }}</ref> In 1963, he was jointly awarded the [[Nobel Prize in Physiology or Medicine]] for his part in discoveries concerning the ionic mechanisms of the nerve cell.<ref name=":1" /> In 1969 he was appointed to a Royal Society Research Professorship, which he held in the Department of Physiology at University College London.


In 1980, Huxley was elected as President of the Royal Society, a post he held until 1985. In his Presidential Address in 1981, he chose to defend the [[Natural selection theory|Darwinian explanation of evolution]], as his ancestor, T. H. Huxley had in 1860. Whereas T. H. Huxley was defying the bishops of his day, Sir Andrew was countering new theories of periods of accelerated change. In 1983, he defended the Society's decision to elect [[Margaret Thatcher]] as a fellow on the ground of her support for science even after 44 fellows had signed a letter of protest.
In 1980, Huxley was elected as President of the Royal Society, a post he held until 1985. In his Presidential Address in 1981, he chose to defend the [[Natural selection theory|Darwinian explanation of evolution]], as his ancestor, T. H. Huxley had in 1860. Whereas T. H. Huxley was defying the bishops of his day, Sir Andrew was countering new theories of periods of accelerated change. In 1983, he defended the Society's decision to elect [[Margaret Thatcher]] as a fellow on the ground of her support for science even after 44 fellows had signed a letter of protest.


In 1984, he was elected Master of Trinity, succeeding his longtime collaborator, Sir Alan Hodgkin. His appointment broke the tradition that the office of Master of Trinity alternates between a scientist and an arts man. He was Master until 1990 and was fond of reminding interviewers that Trinity College had more Nobel Prize winners than did the whole of France. He maintained up to his death his position as a fellow at [[Trinity College, Cambridge]], teaching in [[physiology]], [[Natural Sciences (Cambridge)|natural sciences]] and medicine.<ref>[http://www.trin.cam.ac.uk/index.php?pageid=172 The Master of Trinity] at [[Trinity College, Cambridge]]</ref> He was also a fellow of [[Imperial College London]] in 1980.<ref>{{cite web|url=http://www3.imperial.ac.uk/aboutimperial/imperial_people/nobel_laureates|title=Nobel Laureates associated with Imperial College London|publisher=Imperial College London}}</ref>
In 1984, he was elected Master of Trinity, succeeding his longtime collaborator, Sir Alan Hodgkin. His appointment broke the tradition that the office of Master of Trinity alternates between a scientist and an arts man. He was Master until 1990 and was fond of reminding interviewers that Trinity College had more Nobel Prize winners than did the whole of France. He maintained up to his death his position as a fellow at [[Trinity College, Cambridge]], teaching in [[physiology]], [[Natural Sciences (Cambridge)|natural sciences]] and medicine.<ref>[http://www.trin.cam.ac.uk/index.php?pageid=172 The Master of Trinity] at [[Trinity College, Cambridge]]{{Dead link|date=December 2023}}</ref> He was also a fellow of [[Imperial College London]] in 1980.<ref>{{cite web |date=11 September 2023 |title=Nobel Laureates associated with Imperial College London |url=http://www3.imperial.ac.uk/aboutimperial/imperial_people/nobel_laureates |publisher=Imperial College London}}{{Dead link|date=December 2023}}</ref>


From his experimental work with Hodgkin, Huxley developed a set of differential equations that provided a mathematical explanation for nerve impulses—the "action potential". This work provided the foundation for all of the current work on voltage-sensitive membrane channels, which are responsible for the functioning of animal nervous systems. Quite separately, he developed the mathematical equations for the operation of myosin "cross-bridges" that generate the sliding forces between actin and myosin filaments, which cause the contraction of skeletal muscles. These equations presented an entirely new paradigm for understanding [[muscle contraction]], which has been extended to provide understanding of almost all of the movements produced by cells above the level of bacteria. Together with the Swiss physiologist Robert Stämpfli, he evidenced the existence of [[saltatory conduction]] in [[myelin]]ated nerve fibres.
From his experimental work with Hodgkin, Huxley developed a set of differential equations that provided a mathematical explanation for nerve impulses—the "action potential". This work provided the foundation for all of the current work on voltage-sensitive membrane channels, which are responsible for the functioning of animal nervous systems. Quite separately, he developed the mathematical equations for the operation of myosin "cross-bridges" that generate the sliding forces between actin and myosin filaments, which cause the contraction of skeletal muscles. These equations presented an entirely new paradigm for understanding [[muscle contraction]], which has been extended to provide understanding of almost all of the movements produced by cells above the level of bacteria. Together with the Swiss physiologist Robert Stämpfli, he evidenced the existence of [[saltatory conduction]] in [[myelin]]ated nerve fibres.


==Awards and honours==
==Awards and honours==
Huxley, Alan Hodgkin and [[John Eccles (neurophysiologist)|John Eccles]] jointly won the 1963 [[Nobel Prize in Physiology or Medicine]] "for their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and central portions of the nerve cell membrane". Huxley and Hodgkin won the prize for experimental and mathematical work on the process of nerve [[action potential]]s, the electrical impulses that enable the activity of an organism to be coordinated by a [[central nervous system]].<ref>{{cite news|author=Anthony Tucker |url=https://www.theguardian.com/science/2012/may/31/sir-andrew-huxley?newsfeed=true |title=Sir Andrew Huxley &#124; Science |newspaper=The Guardian |date= 31 May 2012|access-date=31 May 2012 |location=London}}</ref> Eccles had made important discoveries on [[synaptic transmission]].
Huxley, Alan Hodgkin and [[John Eccles (neurophysiologist)|John Eccles]] jointly won the 1963 [[Nobel Prize in Physiology or Medicine]] "for their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and central portions of the nerve cell membrane". Huxley and Hodgkin won the prize for experimental and mathematical work on the process of nerve [[action potential]]s, the electrical impulses that enable the activity of an organism to be coordinated by a [[central nervous system]].<ref name=":0" /> Eccles had made important discoveries on [[synaptic transmission]].


Huxley was elected a [[List of Fellows of the Royal Society elected in 1955|Fellow of the Royal Society (FRS) in 1955]], and was awarded its [[Copley Medal]] in 1973 "in recognition of his outstanding studies on the mechanisms of the nerve impulse and of activation of muscular contraction."<ref>{{cite web|url=http://royalsociety.org/awards/copley-medal/|title=Copley Medal|publisher=The Royal Society}}</ref> Huxley was elected to the [[American Academy of Arts and Sciences]] in 1961.<ref>{{Cite web |title=Andrew Fielding Huxley |url=https://www.amacad.org/person/andrew-fielding-huxley |access-date=2022-08-01 |website=American Academy of Arts & Sciences |language=en}}</ref> He was [[Knight Bachelor|knighted]] by [[Elizabeth II|Queen Elizabeth II]] on 12 November 1974. He was elected to the [[American Philosophical Society]] in 1975 and the United States [[National Academy of Sciences]] in 1979.<ref>{{Cite web |title=APS Member History |url=https://search.amphilsoc.org/memhist/search?creator=Andrew+Huxley&title=&subject=&subdiv=&mem=&year=&year-max=&dead=&keyword=&smode=advanced |access-date=2022-08-01 |website=search.amphilsoc.org}}</ref><ref>{{Cite web |title=Andrew Huxley |url=http://www.nasonline.org/member-directory/deceased-members/46127.html |access-date=2022-08-01 |website=www.nasonline.org}}</ref> He was appointed to the [[Order of Merit]] on 11 November 1983. In 1976–77, he was President of the [[British Science Association]] and from 1980 to 1985 he served as [[President of the Royal Society]].
Huxley was elected a [[List of Fellows of the Royal Society elected in 1955|Fellow of the Royal Society (FRS) in 1955]], and was awarded its [[Copley Medal]] in 1973 "in recognition of his outstanding studies on the mechanisms of the nerve impulse and of activation of muscular contraction."<ref>{{Cite web |title=Copley Medal |url=https://royalsociety.org/grants-schemes-awards/awards/copley-medal/ |access-date=2023-12-16 |website=[[Royal Society]]}}</ref> Huxley was elected to the [[American Academy of Arts and Sciences]] in 1961.<ref>{{Cite web |title=Andrew Fielding Huxley |url=https://www.amacad.org/person/andrew-fielding-huxley |access-date=2022-08-01 |website=American Academy of Arts & Sciences |language=en}}</ref> He was [[Knight Bachelor|knighted]] by [[Elizabeth II|Queen Elizabeth II]] on 12 November 1974. He was elected to the [[American Philosophical Society]] in 1975 and the United States [[National Academy of Sciences]] in 1979.<ref>{{Cite web |title=APS Member History |url=https://search.amphilsoc.org/memhist/search?creator=Andrew+Huxley&title=&subject=&subdiv=&mem=&year=&year-max=&dead=&keyword=&smode=advanced |access-date=2022-08-01 |website=search.amphilsoc.org}}</ref><ref>{{Cite web |title=Andrew Huxley |url=http://www.nasonline.org/member-directory/deceased-members/46127.html |access-date=2022-08-01 |website=www.nasonline.org}}</ref> He was appointed to the [[Order of Merit]] on 11 November 1983. In 1976–77, he was President of the [[British Science Association]] and from 1980 to 1985 he served as [[President of the Royal Society]]. In 1986 he was elected an Honorary Fellow of the [[Royal Academy of Engineering]] then known as the Fellowship of Engineering.<ref name="WW">{{cite web |title=Huxley, Sir Andrew Fielding |url=https://doi.org/10.1093/ww/9780199540884.013.U21370 |website=UK Who's Who online |doi=10.1093/ww/9780199540884.013.U21370 |access-date=7 October 2023}}</ref>


Huxley's portrait by [[David Poole (artist)|David Poole]] hangs in Trinity College's collection.<ref>{{cite web|title=Trinity College, University of Cambridge|url=https://www.bbc.co.uk/arts/yourpaintings/paintings/search/located_at/trinity-college-cambridge-5846_locations|publisher=BBC Your Paintings|access-date=12 February 2018|archive-url=https://archive.today/20140511164255/http://www.bbc.co.uk/arts/yourpaintings/paintings/search/located_at/trinity-college-cambridge-5846_locations|archive-date=11 May 2014|url-status=dead|df=dmy-all}}</ref>
Huxley's portrait by [[David Poole (artist)|David Poole]] hangs in Trinity College's collection.<ref>{{cite web|title=Trinity College, University of Cambridge|url=https://www.bbc.co.uk/arts/yourpaintings/paintings/search/located_at/trinity-college-cambridge-5846_locations|publisher=BBC Your Paintings|access-date=12 February 2018|archive-url=https://archive.today/20140511164255/http://www.bbc.co.uk/arts/yourpaintings/paintings/search/located_at/trinity-college-cambridge-5846_locations|archive-date=11 May 2014|url-status=dead|df=dmy-all}}</ref>
Line 92: Line 94:


===Death===
===Death===
Huxley died on 30 May 2012. He was survived by his six children, grandchildren, and great-grandchildren. His wife Richenda, Lady Huxley died in 2003, aged 78. A funeral service was held in Trinity College Chapel on 13 June 2012, followed by a private cremation.<ref>{{cite web|title=Sir Andrew Huxley (1917–2012)|url=https://www.trin.cam.ac.uk/index.php?pageid=395&offset=30|publisher=Trinity College, Cambridge|access-date=25 February 2014}}</ref>
Huxley died at [[Addenbrooke's Hospital]] in Cambridge on 30 May 2012.<ref>{{Cite ODNB |last=Glynn |first=Ian |author-link=Ian Glynn |date=7 January 2016 |title=Huxley, Sir Andrew Fielding (1917–2012), physiologist |id=105169}}</ref> He was survived by his six children, grandchildren, and great-grandchildren. His wife Richenda, Lady Huxley died in 2003, aged 78. A funeral service was held in Trinity College Chapel on 13 June 2012, followed by a private cremation.<ref>{{cite web|title=Sir Andrew Huxley (1917–2012)|url=https://www.trin.cam.ac.uk/index.php?pageid=395&offset=30|publisher=Trinity College, Cambridge|access-date=25 February 2014}}</ref>


==Publications==
==Publications==
Line 112: Line 114:
*{{Nobelprize}}
*{{Nobelprize}}
*{{NPG name}}
*{{NPG name}}
*{{Cite interview |last=Huxley |first=Andrew |interviewer1=Macfarlane, Alan |interviewer2=Harrison, Sarah |title=Andrew Huxley |url=https://www.sms.cam.ac.uk/media/1123362}}
*[https://www.sms.cam.ac.uk/media/1123362 Andrew Huxley interviewed by Alan Macfarlane, 5 October 2007 (video)]
*{{Cite web |date=2012-06-05 |title=Physicist discovered key to brain science |url=https://www.smh.com.au/national/physicist-discovered-key-to-brain-science-20120607-1zy51.html |website=The Sydney Morning Herald |language=en |agency=[[The New York Times]]}}
*[https://www.theguardian.com/science/2012/may/31/sir-andrew-huxley Sir Andrew Huxley obituary] ''The Guardian'', 31 May 2012.
*{{Cite journal |last=Watts |first=Geoff |date=2012-06-30 |title=Andrew Fielding Huxley |journal=[[The Lancet]] |volume=379 |issue=9835 |pages=2422 |doi=10.1016/s0140-6736(12)61056-3 |issn=0140-6736|doi-access=free |pmid=22764376 }}
*[http://www.smh.com.au/national/obituaries/physicist-discovered-key-to-brain-science-20120607-1zy51.html Physicist discovered key to brain science] The Sydney Morning Herald, 6 June 2012, reprinted from The New York Times.


{{S-start}}
{{S-start}}
Line 123: Line 125:
{{s-break}}
{{s-break}}
{{s-bef|before=[[Alan Lloyd Hodgkin|Sir Alan Hodgkin]]}}
{{s-bef|before=[[Alan Lloyd Hodgkin|Sir Alan Hodgkin]]}}
{{s-ttl|title=[[Trinity College, Cambridge|Master of Trinity College, Cambridge]]|order=34th|years=1984–1990}}
{{s-ttl|title=[[List of masters of Trinity College, Cambridge|Master of Trinity College, Cambridge]]|order=34th|years=1984–1990}}
{{s-aft|after=[[Michael Atiyah|Sir Michael Atiyah]]}}
{{s-aft|after=[[Michael Atiyah|Sir Michael Atiyah]]}}
{{s-break}}
{{s-break}}
Line 154: Line 156:
[[Category:Foreign Fellows of the Indian National Science Academy]]
[[Category:Foreign Fellows of the Indian National Science Academy]]
[[Category:Fullerian Professors of Physiology]]
[[Category:Fullerian Professors of Physiology]]
[[Category:Honorary Fellows of the Royal Academy of Engineering]]
[[Category:Huxley family|Andrew]]
[[Category:Huxley family|Andrew]]
[[Category:Knights Bachelor]]
[[Category:Knights Bachelor]]

Latest revision as of 15:52, 22 June 2024

Andrew Huxley
Huxley in 1963
Born
Andrew Fielding Huxley

(1917-11-22)22 November 1917
Hampstead, London, England
Died30 May 2012(2012-05-30) (aged 94)
Cambridge, England
Alma materUniversity of Cambridge
Known for
Spouse
J. Richenda G. Pease
(m. 1947; died 2003)
Children6
Parent
RelativesHuxley family
Awards
Scientific career
Fields
Institutions

Sir Andrew Fielding Huxley OM FRS HonFREng (22 November 1917 – 30 May 2012) was an English physiologist and biophysicist.[1][2] He was born into the prominent Huxley family. After leaving Westminster School in central London, he went to Trinity College, Cambridge, on a scholarship, after which he joined Alan Hodgkin to study nerve impulses. Their eventual discovery of the basis for propagation of nerve impulses (called an action potential) earned them the Nobel Prize in Physiology or Medicine in 1963. They made their discovery from the giant axon of the Atlantic squid. Soon after the outbreak of the Second World War, Huxley was recruited by the British Anti-Aircraft Command and later transferred to the Admiralty. After the war he resumed research at the University of Cambridge, where he developed interference microscopy that would be suitable for studying muscle fibres.

In 1952, he was joined by a German physiologist Rolf Niedergerke. Together they discovered in 1954 the mechanism of muscle contraction, popularly called the "sliding filament theory", which is the foundation of our modern understanding of muscle mechanics. In 1960 he became head of the Department of Physiology at University College London. He was elected a Fellow of the Royal Society in 1955, and President in 1980. The Royal Society awarded him the Copley Medal in 1973 for his collective contributions to the understanding of nerve impulses and muscle contraction. He was conferred a Knight Bachelor by the Queen in 1974, and was appointed to the Order of Merit in 1983. He was a fellow of Trinity College, Cambridge, until his death.

Early life and education[edit]

Huxley was born in Hampstead, London, England, on 22 November 1917. He was the youngest son of the writer and editor Leonard Huxley by Leonard Huxley's second wife Rosalind Bruce, and hence half-brother of the writer Aldous Huxley and fellow biologist Julian Huxley, and grandson of the biologist T. H. Huxley.

When he was about 12, Andrew and his brother David were given a lathe by their parents. Andrew soon became proficient at designing, making and assembling mechanical objects of all kinds, from wooden candle sticks to a working internal combustion engine. He used these practical skills throughout his career, building much of the specialized equipment he needed for his research. It was also in his early teens that he formed his lifelong interest in microscopy.[3]

He was educated at University College School and Westminster School in Central London, where he was a King's Scholar. He graduated and won a scholarship to Trinity College, Cambridge, to read natural sciences. He had intended to become an engineer but switched to physiology after taking the subject to fulfill an elective.[4]

Career[edit]

Having entered Cambridge in 1935, Huxley graduated with a bachelor's degree in 1938. In 1939, Alan Lloyd Hodgkin returned from the US to take up a fellowship at Trinity College, and Huxley became one of his postgraduate students. Hodgkin was interested in the transmission of electrical signals along nerve fibres. Beginning in 1935 in Cambridge, he had made preliminary measurements on frog sciatic nerves suggesting that the accepted view of the nerve as a simple, elongated battery was flawed. Hodgkin invited Huxley to join him researching the problem. The work was experimentally challenging. One major problem was that the small size of most neurons made it extremely difficult to study them using the techniques of the time. They overcame this by working at the Marine Biological Association laboratory in Plymouth using the giant axon of the longfin inshore squid (Doryteuthis (formerly Loligo) pealeii), which have the largest neurons known.[5] The experiments were still extremely challenging as the nerve impulses only last a fraction of a millisecond, during which time they needed to measure the changing electrical potential at different points along the nerve. Using equipment largely of their own construction and design, including one of the earliest applications of a technique of electrophysiology known as the voltage clamp, they were able to record ionic currents. In 1939, they jointly published a short paper in Nature reporting on the work done in Plymouth and announcing their achievement of recording action potentials from inside a nerve fibre.[6]

Then World War II broke out, and their research was abandoned. Huxley was recruited by the British Anti-Aircraft Command, where he worked on radar control of anti-aircraft guns. Later he was transferred to the Admiralty to do work on naval gunnery, and worked in a team led by Patrick Blackett. Hodgkin, meanwhile, was working on the development of radar at the Air Ministry. When he had a problem concerning a new type of gun sight, he contacted Huxley for advice. Huxley did a few sketches, borrowed a lathe and produced the necessary parts.

Huxley was elected to a research fellowship at Trinity College, Cambridge, in 1941. In 1946, with the war ended, he was able to take this up and to resume his collaboration with Hodgkin on understanding how nerves transmit signals. Continuing their work in Plymouth, they were, within six years, able to solve the problem using equipment they built themselves. The solution was that nerve impulses, or action potentials, do not travel down the core of the fiber, but rather along the outer membrane of the fiber as cascading waves of sodium ions diffusing inward on a rising pulse and potassium ions diffusing out on a falling edge of a pulse. In 1952, they published their theory of how action potentials are transmitted in a joint paper, in which they also describe one of the earliest computational models in biochemistry.[7] This model forms the basis of most of the models used in neurobiology during the following four decades.[8]

In 1952, having completed work on action potentials, Huxley was teaching physiology at Cambridge and became interested in another difficult, unsolved problem: how does muscle contract? To make progress on understanding the function of muscle, new ways of observing how the network of filaments behave during contraction were needed. Prior to the war, he had been working on a preliminary design for interference microscopy, which at the time he believed to be original, though it turned out to have been tried 50 years before and abandoned. He, however, was able to make interference microscopy work and to apply it to the problem of muscle contraction with great effect. He was able to view muscle contraction with greater precision than conventional microscopes, and to distinguish types of fiber more easily. By 1953, with the assistance of Rolf Niedergerke, he began to find the features of muscle movement. Around that time, Hugh Huxley and Jean Hanson came to a similar observation. Authored in pairs, their papers were simultaneously published in the 22 May 1954 issue of Nature.[9][10] Thus the four people introduced what is called the sliding filament theory of muscle contractions.[11] Huxley synthesized his findings, and the work of colleagues, into a detailed description of muscle structure and how muscle contraction occurs and generates force that he published in 1957.[12] In 1966 his team provided the proof of the theory, and has remained the basis of modern understanding of muscle physiology.[13]

In 1953, Huxley worked at Woods Hole, Massachusetts, as a Lalor Scholar. He gave the Herter Lectures at Johns Hopkins Medical School in 1959 and the Jesup Lectures at Columbia University in 1964. In 1961 he lectured on neurophysiology at Kiev University as part of an exchange scheme between British and Russian professors.

He was an editor of the Journal of Physiology from 1950 to 1957 and also of the Journal of Molecular Biology. In 1955, he was elected a Fellow of the Royal Society and served on the Council of the Royal Society from 1960 to 1962.[14]

Huxley held college and university posts in Cambridge until 1960, when he became head of the Department of Physiology at University College London. In addition to his administrative and teaching duties, he continued to work actively on muscle contraction, and also made theoretical contributions to other work in the department, such as that on animal reflectors.[15] In 1963, he was jointly awarded the Nobel Prize in Physiology or Medicine for his part in discoveries concerning the ionic mechanisms of the nerve cell.[4] In 1969 he was appointed to a Royal Society Research Professorship, which he held in the Department of Physiology at University College London.

In 1980, Huxley was elected as President of the Royal Society, a post he held until 1985. In his Presidential Address in 1981, he chose to defend the Darwinian explanation of evolution, as his ancestor, T. H. Huxley had in 1860. Whereas T. H. Huxley was defying the bishops of his day, Sir Andrew was countering new theories of periods of accelerated change. In 1983, he defended the Society's decision to elect Margaret Thatcher as a fellow on the ground of her support for science even after 44 fellows had signed a letter of protest.

In 1984, he was elected Master of Trinity, succeeding his longtime collaborator, Sir Alan Hodgkin. His appointment broke the tradition that the office of Master of Trinity alternates between a scientist and an arts man. He was Master until 1990 and was fond of reminding interviewers that Trinity College had more Nobel Prize winners than did the whole of France. He maintained up to his death his position as a fellow at Trinity College, Cambridge, teaching in physiology, natural sciences and medicine.[16] He was also a fellow of Imperial College London in 1980.[17]

From his experimental work with Hodgkin, Huxley developed a set of differential equations that provided a mathematical explanation for nerve impulses—the "action potential". This work provided the foundation for all of the current work on voltage-sensitive membrane channels, which are responsible for the functioning of animal nervous systems. Quite separately, he developed the mathematical equations for the operation of myosin "cross-bridges" that generate the sliding forces between actin and myosin filaments, which cause the contraction of skeletal muscles. These equations presented an entirely new paradigm for understanding muscle contraction, which has been extended to provide understanding of almost all of the movements produced by cells above the level of bacteria. Together with the Swiss physiologist Robert Stämpfli, he evidenced the existence of saltatory conduction in myelinated nerve fibres.

Awards and honours[edit]

Huxley, Alan Hodgkin and John Eccles jointly won the 1963 Nobel Prize in Physiology or Medicine "for their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and central portions of the nerve cell membrane". Huxley and Hodgkin won the prize for experimental and mathematical work on the process of nerve action potentials, the electrical impulses that enable the activity of an organism to be coordinated by a central nervous system.[3] Eccles had made important discoveries on synaptic transmission.

Huxley was elected a Fellow of the Royal Society (FRS) in 1955, and was awarded its Copley Medal in 1973 "in recognition of his outstanding studies on the mechanisms of the nerve impulse and of activation of muscular contraction."[18] Huxley was elected to the American Academy of Arts and Sciences in 1961.[19] He was knighted by Queen Elizabeth II on 12 November 1974. He was elected to the American Philosophical Society in 1975 and the United States National Academy of Sciences in 1979.[20][21] He was appointed to the Order of Merit on 11 November 1983. In 1976–77, he was President of the British Science Association and from 1980 to 1985 he served as President of the Royal Society. In 1986 he was elected an Honorary Fellow of the Royal Academy of Engineering then known as the Fellowship of Engineering.[22]

Huxley's portrait by David Poole hangs in Trinity College's collection.[23]

Personal life[edit]

In 1947, Huxley married Jocelyn "Richenda" Gammell (née Pease), the daughter of the geneticist Michael Pease (a son of Edward R. Pease) and his wife Helen Bowen Wedgwood, eldest daughter of the first Lord Wedgwood (see also Darwin–Wedgwood family). They had one son and five daughters – Janet Rachel Huxley (born 20 April 1948), Stewart Leonard Huxley (born 19 December 1949), Camilla Rosalind Huxley (born 12 March 1952), Eleanor Bruce Huxley (born 21 February 1959), Henrietta Catherine Huxley (born 25 December 1960), and Clare Marjory Pease Huxley (born 4 November 1962).

Death[edit]

Huxley died at Addenbrooke's Hospital in Cambridge on 30 May 2012.[24] He was survived by his six children, grandchildren, and great-grandchildren. His wife Richenda, Lady Huxley died in 2003, aged 78. A funeral service was held in Trinity College Chapel on 13 June 2012, followed by a private cremation.[25]

Publications[edit]

  • Huxley, A. F., 1980. Reflections on muscle. The Sherrington Lectures XIV. Liverpool.

Popular culture[edit]

Huxley was mentioned in S11 E6 of Archer: "The Double Date".

See also[edit]

References[edit]

  1. ^ Huxley, Andrew F. (2004). "Andrew F. Huxley". In Squire, Larry R. (ed.). The History of Neuroscience in Autobiography. Vol. 4. Academic Press and Society for Neuroscience. pp. 282–318. ISBN 0-12-660246-8.
  2. ^ Goldman, Yale E.; Franzini-Armstrong, Clara; Armstrong, Clay M. (2012). "Andrew Fielding Huxley (1917–2012)". Nature. 486 (7404): 474. Bibcode:2012Natur.486..474G. doi:10.1038/486474a. PMID 22739307.
  3. ^ a b Tucker, Anthony (31 May 2012). "Sir Andrew Huxley obituary". The Guardian. ISSN 0261-3077. Retrieved 16 December 2023.
  4. ^ a b "Andrew F. Huxley – Biographical". NobelPrize.org. Retrieved 16 December 2023.
  5. ^ Hellier, Jennifer L. (2015). The Brain, the Nervous System, and Their Diseases. Greenwood. p. 532. ISBN 978-1-61069-338-7.
  6. ^ Hodgkin, A. L.; Huxley, A. F. (1939). "Action potentials recorded from Inside a nerve fibre". Nature. 144 (3651): 710–711. Bibcode:1939Natur.144..710H. doi:10.1038/144710a0. S2CID 4104520.
  7. ^ Le Novère, Nicolas. "hodgkin-huxley squid-axon 1952". BioModels. Retrieved 15 December 2023.
  8. ^ Reilly, J. Patrick; Diamant, Alan M. (2011). Electrostimulation: Theory, Applications, and Computational Model. Artech House. pp. 20–21. ISBN 978-1-60807-108-1.
  9. ^ Huxley, A.F.; Niedergerke, R. (1954). "Structural changes in muscle during contraction; interference microscopy of living muscle fibres". Nature. 173 (4412): 971–3. Bibcode:1954Natur.173..971H. doi:10.1038/173971a0. PMID 13165697. S2CID 4275495.
  10. ^ Huxley, H.; Hanson, J. (1954). "Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation". Nature. 173 (4412): 973–76. Bibcode:1954Natur.173..973H. doi:10.1038/173973a0. PMID 13165698. S2CID 4180166.
  11. ^ Huxley, A.F (1954). "A high-power interference microscope". J. Physiol. 125 (1): 11–13. doi:10.1113/jphysiol.1954.sp005186. PMID 13192775. S2CID 222198517.
  12. ^ Huxley, A.F. (1957). "Muscle structure and theories of contraction". Prog. Biophys. Biophys. Chem. 7: 255–318. doi:10.1016/S0096-4174(18)30128-8. PMID 13485191.
  13. ^ Gordon, AM; Huxley, AF; Julian, FJ (1966). "The variation in isometric tension with sarcomere length in vertebrate muscle fibres". The Journal of Physiology. 184 (1): 170–92. doi:10.1113/jphysiol.1966.sp007909. PMC 1357553. PMID 5921536.
  14. ^ Malcolm Simmons, Robert (2018). "Sir Andrew Fielding Huxley OM. 22 November 1917 – 30 May 2012". Biographical Memoirs of Fellows of the Royal Society. 65: 179–215. doi:10.1098/rsbm.2018.0012.
  15. ^ Huxley, A.F. (1954). "A theoretical treatment of reflexion of light by multilayer structures". J. Exp. Biol. 48 (2): 227–245. doi:10.1242/jeb.48.2.227.
  16. ^ The Master of Trinity at Trinity College, Cambridge[dead link]
  17. ^ "Nobel Laureates associated with Imperial College London". Imperial College London. 11 September 2023.[dead link]
  18. ^ "Copley Medal". Royal Society. Retrieved 16 December 2023.
  19. ^ "Andrew Fielding Huxley". American Academy of Arts & Sciences. Retrieved 1 August 2022.
  20. ^ "APS Member History". search.amphilsoc.org. Retrieved 1 August 2022.
  21. ^ "Andrew Huxley". www.nasonline.org. Retrieved 1 August 2022.
  22. ^ "Huxley, Sir Andrew Fielding". UK Who's Who online. doi:10.1093/ww/9780199540884.013.U21370. Retrieved 7 October 2023.
  23. ^ "Trinity College, University of Cambridge". BBC Your Paintings. Archived from the original on 11 May 2014. Retrieved 12 February 2018.
  24. ^ Glynn, Ian (7 January 2016). "Huxley, Sir Andrew Fielding (1917–2012), physiologist". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/105169. (Subscription or UK public library membership required.)
  25. ^ "Sir Andrew Huxley (1917–2012)". Trinity College, Cambridge. Retrieved 25 February 2014.

External links[edit]

Academic offices
Preceded by Fullerian Professor of Physiology
1967–1973
Succeeded by
Preceded by 34th Master of Trinity College, Cambridge
1984–1990
Succeeded by
Professional and academic associations
Preceded by 55th President of the Royal Society
1980–1985
Succeeded by